网站首页 美食营养 游戏数码 手工爱好 生活家居 健康养生 运动户外 职场理财 情感交际 母婴教育 时尚美容

DataFrame的缺失数据判断和处理(1)

时间:2024-10-11 18:25:36

1、前提:加载numpy、pandas、和Series,DataFrame。生成一个含有缺失值的Series,命名为s1,如图

DataFrame的缺失数据判断和处理(1)

3、Series缺失值的删除。s1.dropna()为删除s1的缺失值后的数倌栗受绽据,s1[s1.notnull()]则为取出s1中不是缺失值的数据,从2个方面得到的结果一样,也就是所谓的条条道路通罗马,如图

DataFrame的缺失数据判断和处理(1)

5、df2.dropna()默认删除了含有缺失值的所有行,如果我们只需要把某一行所有数据为缺失值的才删除,那么需要用how=‘all’进行覆诈端螽限制,如df2.dropna(how='all'),操作如图

DataFrame的缺失数据判断和处理(1)
© 2025 小知经验
信息来自网络 所有数据仅供参考
有疑问请联系站长 site.kefu@gmail.com